当前位置:帕菲诺生活百科 > 生活经验 > 既然有导数为什么还要微分

既然有导数为什么还要微分

导数和微积分有什么关系最好帮我推导一下

导数是微积分中的基本概念,而极限是微积分的基石。导数就是微积分计算的工具。 导数也叫作微商,是函数因变量的微分与自变量的微分的商,而积分的过程说白了就等价于已知某函数的导数求这个函数的运算。 导数是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。 扩展资料 常用导数公式: 1、y=c(c为常数)y'=0 2、y=x^ny'=nx^(n-1) 3、y=a^xy'=a^xlna,y=e^xy'=e^x 4、y=logaxy'=logae/x,y=lnxy'=1/x 5、y=sinxy'=cosx 6、y=cosxy'=-sinx 7、y=tanxy'=1/cos^2x 8、y=cotxy'=-1/sin^2x 9、y=arcsinxy'=1/√1-x^2 10、y=arccosxy'=-1/√1-x^2

导数和微分的区别和联系

导数是描述函数变化的快慢,微分是描述函数变化的程度。导数是函数的局部性质,一个函数在某一点的导数描述了这个函数在这一点附近的变化率。而微分是一个函数表达式,用于自变量产生微小变化时计算因变量的近似值。

既然有导数为什么还要微分,第1张

1微分简介

微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。微积分的基本概念之一。

2导数简介

导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

微分和导数是什么关系

导数是函数图像在某一点处的斜率,是纵坐标增量(Δy)和横坐标增量(Δx)在Δx-->0时的比值。而微分是指函数图像在某一点处的切线在横坐标取得增量Δx以后,纵坐标取得的增量,一般表示为dy。 积分是微分的逆运算,即知道了函数的导函数,反求原函数。积分被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。